Pular para o conteúdo principal

 

 RELATIVIDADE DO INFINITO-DIMENSIONAL GRACELI.



 

EM TODAS AS ÁREAS DA FÍSICIA E EM SEUS FENÔMENOS EM ESCALA ÍNFIMA E INFINITA, E EM TERMOS DO INFINITO-DIMENSIONAL GRACELI, SE TEM UM UNIVERSO DE INDETERMINALIDADE E ALEATORIEDADE, NÃO VOU TRATAR COMO QUÂNTICO POR SE TRATAR NESTE CASO DE TEORIA DE ONDAS.


OU SEJA, SE TEM UM FERRO EM INCANDESCÊNCIA SE TEM NESTE CASO AS PARTÍCULAS DO FERRO COM VARIAÇÕES DE PROCESSOS E TRANSFORMAÇÕES ÍNFIMAS DENTRO DO SISTEMA DO INFINITO DIMENSIONAL GRACELI.

OU SEJA, SE ENCONTRA NUM UNIVERSO DE INDETERMINALIDADE E ALEATORIEDADE DINÃMICA E TRANSFORMATIVA.


COM PROCESSOS E INTENSIDADES ESPECÍFICOS PARA O FERRO.



OU SEJA, SE TEM 


 TEORIA GENERALIZADA GRACELI DA ABSORÇÃO, EMISSSÃO, TRANSIÇÃO, TRANSFERÊNCIA DE ENERGIA E MOMENTUN, TUNELAMENTO, DIFUSÃO, REFRAÇÃO, RETRAÇÃO, FUSÕES, DILATAÇÃO,  E OUTROS.


E  PONTOS CRÍTICOS DE FUSÕES, EBULIÇÕES, MUDANÇAS DE FASES, ENTROPIAS, ENTALPIAS, ETC.

ACELERAÇÕES DE FENÔMENOS TERMICOS, RADIAÇÕES, E DILATAÇÕES., ETC.

ISTO PARA TODOS OS FENÔMENSO DENTRO DAS FÍSICAS E QUÍMICAS.

SENDO QUE CADA UM DESTES FENÔMENOS CONTÉM RELAÇÕES ENTRE SI E CONFORME OS TIPOS DE MATERIAIS E MESMO NUM MESMO TIPO DE  MATERIAL VARIA DE UNS PARA OUTROS, .


EXEMPLO.

COMO DE FERRO PARA ALUMÍNIO, E DE ALGUNS ALUMÍNIOS PARA OUTROS ALUMÍNIOS,


O MESMO PARA TODOS OS TIPOS DE MATERIAIS E ELEMENTOS QUÍMICO, MOLÍCULAS E PARTÍCULAS.


E CONORME O SISTEMA DO INFINITO-DIMENSIONAL GRACELI.


OU SEJA, UM RELATIVISMO QUÍMICO E FÍSICO QUÍMICO.



 RELATIVIDADE DIMENSIONAL GRACELI.



 

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.

TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL.


ONDE CADA INFINITA PARTÍCULA TEM INFINITAS DIMENSÕES FORMANDO UM SISTEMA GERAL UNIFICATÓRIO COM PADRÕES DE VARIAÇÕES CONFORME AS PARTÍCULA QUE NO CASO PASSAM A REPRESENTAR DIMENSÕES, PADRÕES DE ENERGIAS E E PADRÕES POTENCIAIS DE TRANSFORMAÇÕES, INTERAÇÕES CATEGORIAS FÍSICAS DE GRACELI E OUTROS.


NA TEORIA DAS CORDAS PARTÍCULAS SÃO REPRESNTADAS POR VIBRAÇÕES.


JÁ NA TEORIA GRACELI GERAL E UNIFICATÓRIA DIMENSIONAL. NO CASO SÃO REPRENTADOS POR DIMENSÕES FÍSICAS E QUÍMICA DE GRACELI.



TEORIA FÍSICA DE GRACELI GENERALIZADA ENTRE SDCTIE , TENSORES DE GRACELI, NO :

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

 sistema indeterminístico Graceli ;

SISTEMA GRACELI INFINITO-DIMENSIONAL = sdctie graceli, sistema de infinitas dimensões +

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS -QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químico

SISTEMA GRACELI INFINITO-DIMENSIONAL.




 SISTEMA GRACELI INFINITO-DIMENSIONAL.


COM  ELEMENTOS DO SISTEMA SDCTIE GRACELI, TENSOR G+ GRACELI CAMPOS E ENERGIA, E ENERGIA, E CONFIGURAÇÕES ELETRÔNICAS DOS ELEMENTOS QUÍMICO, E OUTRAS ESTRUTURAS.

ESTADO E NÚMERO QUÂNTICO, NÍVEIS DE ENERGIA DO ÁTOMO, FREQUÊNCIA. E OUTROS.


  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos. [parte do sistema Graceli infinito-dimensional].


DENTRO DE UMA CONCEPÇÃO QUE CADA ÁTOMO É FORMADO DE INFINITAs OUTRAS PARTÍCULAS, E COM INFINITAS OUTRAS ENERGIAS, INTERAÇÕES, TRANSFORMAÇÕES, E OUTROS FENÔMENOS, LOGO SE TEM EM CADA ÁTOMO E OU ELEMENTO QUÍMICO INFINITAS OUTRAS DIMENSÕES. COM INFINITAS VARIAÇÕES NAS CATEGORIAS DE GRACELI , QUE  SÃO: OS POTENCIAIS, TIPOS, NÍVEIS, E TEMPO DE AÇÃO ESPECÍFICO  DO FENÔMENO.

ONDE NOS SISTEMAS  DE GRACELI CATEGORIAS,  FENÔMENOS, ESTADOS, ENERGIAS, ESTRUTURAS, E OUTROS SÃO TIPOS E FORMAS DE DIMENSÕES..


FLUXOS ALEATÓRIOS DE ENERGIAS ELÉTRICA,  E FLUXOS DE SALTOS QUÂNTICOS INFINITESIMAIS E INDETERMINADOS.
SENDO QUE VARIAM CONFORME O SISTEMA INFINITO-DIMENSIONAL.


O SISTEMA INFINITO-DIMENSIONAL DE GRACELI, ASSIM, COMO O SISTEMA SDCTIE GRACELI [SISTEMA ENVOLVENDO DIMENSÕES DE GRACELI, E SUAS CATEGORIAS, ESTADOS FÍSICOS E ESTADOS FÍSICOS DE GRACELI, TRANSFORMAÇÕES E INTERAÇÕES], E OS TENSORES DE GRACELI TEM AÇÃO EM TODA A FÍSICA EM TODOS OS SEUS RAMOS E E DIVISÕES, ASSIM, COMO A QUÍMICA E A BIOLOGIA, QUE TODOS ESTES SE FUNDAMENTEM EM ENERGIAS, ONDAS, ESTRUTURAS, CATEGORIAS, ESTADOS, ESPECTROS, DIMENSÕES, E OUTROS.

OU SEJA, DENTRO DE UM SISTEMA GERAL DE GRACELI TODA FÍSICA DAS ESTRTURUAS, ENERGIAS, ONDAS, DIMENSÕES, ESTADOS, E CATEGORIAS. ESTÃO INSERIDOS NESTES SISTEMA DE GRACELI.

dentro de uma concepção que a matéria é infinitésima em termos de tipos e ínfimos diâmetro, logo esta diferenciação faz com que cada ínfima e infinitésima parte tenha ações, transformações, interaçõs, potenciaidades, e outros diferentes de uma das outras. logo se tem infinitas dimensões para cada ínfima e infinitésima parte e tipo.



VEJAMOS;





Em dinâmica dos fluidos, a temperatura de película ou temperatura de filme (Tf, do inglês film temperature), algumas vezes chamada temperatura de superfície, é a temperatura de um fluido em uma superfície interna de um aquecedor. Para aquecedores a chama, Tf é normalmente medido dentro do tubo na parede, mas para aquecedores elétricos de imersão, é medido na superfície do elemento aquecedor.

A temperatura de película é a média aritmética da temperatura de parede (TW) e a temperatura de corrente livre (T). Matematicamente, isto pode ser expresso como:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL




Transformações

Transformações reversíveis

A entropia é um conceito essencial ao estudo das máquinas térmicas.

A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4] surgiu no seguimento de uma função criada por Clausius[4] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de  só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]

, sendo Q reversível
///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

A entropia física, em sua forma clássica é dada por:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

desde que o calor seja trocado de forma reversível

ou, quando o processo é isotérmico:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde S é a entropia,  a quantidade de calor trocado e T a temperatura em Kelvin.

O significado desta equação pode ser descrito, em linguagem corrente, da seguinte forma:

Em processos reversíveis como o descrito, quando um sistema termodinâmico passa do estado 1 ao estado 2, a variação em sua entropia é igual à variação da quantidade de calor trocada (de forma reversível) dividido pela temperatura.

Processos de não equilíbrio

Em processos mais complexos, o que inclui os processos irreversíveis e de não equilíbrio como a expansão livre, entropia pode e sempre é produzida dentro do próprio sistema, e a variação total na entropia destes sistemas é igual à soma de dois termos: a entropia produzida e a entropia trocada com a vizinhança. A entropia trocada equivale, em processos quase estáticos, conforme descrito, à integral de dQ/T, sendo sempre nula quando a transformação é adiabática. O uso desta expressão ao casos de processos de não equilíbrio é contudo inadequado, ou, no mínimo, requer muita cautela, visto que a própria definição de temperatura fica comprometida. Já a entropia produzida vale zero apenas quando o processo é reversível, sendo sempre positiva em transformações irreversíveis.

Observa-se que em todas os processos a entropia total do sistema mais vizinhança ou aumenta (processos irreversíveis), ou fica constante (transformações reversíveis). Na prática, apesar de existirem processos que muito se aproximam dos reversíveis, toda transformação leva a um aumento na entropia total do sistema mais vizinhança, e este princípio permite definir a Segunda Lei da Termodinâmica, cuja implicação direta consiste no fato de que um processo tende a dar-se de forma espontânea em único sentido, aquele que leve ao aumento da entropia total (do sistema mais vizinhança). Por esses motivos, a entropia também é chamada de flecha do tempo.

Como não é possível determinar-se o aumento da entropia partindo-se diretamente de considerações sobre os sistemas que estão em processos de não equilíbrio - irreversíveis - justamente por estes estarem fora do equilíbrio, para determinar-se a variação de entropia total sofrida por um sistema ao longo de um processo de não equilíbrio determina-se a diferença entre as entropias inicial e final associadas aos respectivos estados de equilíbrio inicial e final. Tal consideração leva em conta o fato de a entropia ser uma função de estado, e por tal sua variação não depende de como o sistema saiu de um estado e chegou ao outro, e sim apenas dos estados inicial e final envolvidos.

A unidade de entropia no SI é designada por J/K'.

Definição termodinâmica

No início da década de 1850Rudolf Clausius descreveu o conceito de energia desperdiçada em termos de diferenciais.

Em 1876, o físicoquímico e matemático Willard Gibbs chegou à conclusão de que o conceito de energia disponível ΔG em um sistema termodinâmico é matematicamente obtido através da subtração entre a energia perdida TΔS e a variação da energia total do sistema ΔH.

Estes conceitos foram desenvolvidos posteriormente por James Clerk Maxwell 1871 e Max Planck 1903.

Nos dias de hoje a entropia é postulada conforme se segue: [Nota 6]

- "Existe uma função (denominada entropia S) dos parâmetros extensivos de um sistema definida para todos os estados de equilíbrio termodinâmico deste sistema e com a seguinte propriedade: dentre todos os estados de equilíbrio possíveis que satisfazem as restrições físicas impostas ao sistema o estado de equilíbrio assumido pelo sistema será aquele para o qual os valores dos parâmetros extensivos neste estado levem à maximização do valor de sua entropia S. Em um sistema sem restrições internas a entropia é a maior possível."

A exemplo, na parte superior da figura ao lado tem-se um sistema com uma fronteira adiabática e uma restrição interna. O estado de equilíbrio termodinâmico de um sistema, satisfeitas as restrições internas, corresponde ao estado onde a entropia é a máxima possível. Na parte inferior a restrição é removida. O sistema passa por transformações e, após certo tempo atinge um novo estado de equilíbrio termodinâmico. Nestas transformações a entropia do sistema geralmente aumenta, o que ocorre para expansão livre mostrada, ou em casos outrem específicos - quando todos os processos se fazem de forma reversível - não se altera. A entropia de um sistema isolado nunca diminui.

A entropia de um sistema aumenta mediante a remoção de restrições internas.

Assim, o estado de equilíbrio realmente assumido por um sistema termodinâmico é, satisfeitas as restrições físicas impostas, o estado de maior entropia possível, e a remoção de uma restrição leva geralmente a um aumento da entropia do sistema composto, ou, em caso específicos (transformações reversíveis), à manutenção de seu valor, mas nunca a uma diminuição da mesma.

Há três outros postulados que, em termodinâmica, mostram-se diretamente associados à definição de entropia, sendo eles:

- "A entropia de um sistema composto é aditiva sobre os subsistemas que o constituem. A entropia é contínua e diferenciável e é uma função monótona crescente da energia interna U."
- "A entropia de um sistema é nula para um estado onde a temperatura absoluta T também o seja."
- "Existe um estado particular - chamado estado de equilíbrio - de um sistema que, macroscopicamente, é completamente caracterizado pela energia interna U, pelo volume V, e pela quantidade de matéria N1, N2,N3 de seus constituintes químicos.".[Nota 7]

A entropia S quando expressa em função do volume V do sistema, da quantidade de partículas N do sistema e da energia interna U do sistema, S(U,N,V), é uma Equação Termodinâmica Fundamental para um sistema termodinâmico simples, e pode, mediante a Transformada de Legendre, ser transformada em outras equações fundamentais como a equação da Entalpia H(S,P,N), Energia de Helmholtz F(T,V,N), Energia livre de Gibbs G(T,P,N) ou o Grande Potencial Canônico U(T,P,m). Em sistemas termodinâmicos mais complexos, a exemplo em sistemas magnéticos, outras variáveis podem vir a figurar na equação entrópica fundamental e nas outras equações fundamentais, entretanto os conceitos de equação fundamental e transformada de Legendre permanecem os mesmos.

As equações fundamentais diferem das equações de estado basicamente no fato de que a partir de uma equação fundamental pode-se obter, com o uso do formalismo termodinâmico, qualquer informação a respeito do sistema termodinâmico por ela descrito, inclusive as equações de estado para este sistema, ao passo que o mesmo não pode ser feito a partir de uma equação de estado, que não retém em si todas as informações necessárias a respeito do sistema. É necessário um conjunto de equações de estado para a descrição completa de um sistema termodinâmico (do qual poderia obter-se, então, as equações fundamentais).

Primeira Lei da Termodinâmica

Ver artigo principal: Primeira Lei da Termodinâmica

A primeira lei da termodinâmica é a lei de conservação de energia aplicada aos processos térmicos. Nela observamos a equivalência entre trabalho e calor. Este princípio pode ser enunciado a partir do conceito de energia interna. Esta pode ser entendida como a energia associada aos átomos e moléculas em seus movimentos e interações internas ao sistema. Num sistema isolado a energia total permanece constante.[Nota 8]

Segunda Lei da Termodinâmica

Ver artigo principal: Segunda Lei da Termodinâmica

A Segunda Lei da Termodinâmica, uma importante lei física, determina que a entropia total de um sistema termodinâmico isolado tende a aumentar com o tempo, aproximando-se de um valor máximo à medida que restrições internas ao sistema são removidas. O estado de equilíbrio termodinâmico de um sistema isolado corresponde ao estado onde, satisfeitas as restrições internas, a entropia é máxima. Duas importantes consequências disso são que o calor não pode passar naturalmente de um corpo frio a um corpo quente, e que um Moto perpétuo, ou seja, um motor que produza trabalho infinitamente (ou seja, em processos cíclicos) a partir de uma fonte quente seja impossível.[Nota 9] Isso acarreta que nenhuma máquina térmica tenha rendimento de 100%, pois sempre é necessário um desperdício irreversível de calor para uma fonte fria para o sistema voltar ao estado original e, assim, continue a produzir trabalho a partir do recebimento de calor da fonte quente.

Interpretação estatística

Em 1877Ludwig Boltzmann visualizou um método probabilístico para medir a entropia de um determinado número de partículas de um gás ideal, na qual ele definiu entropia como proporcional ao logaritmo neperiano do número de microestados que um gás pode ocupar:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.

O trabalho de Boltzmann consistiu em encontrar uma forma de obter a equação entrópica fundamental S a partir de um tratamento matemático-probabilístico[Nota 10] facilmente aplicável aos sistemas em questão. Ao fazê-lo, conectou o todo poderoso formalismo termodinâmico associado à equação fundamental a um método de tratamento probabilístico simples que exige apenas considerações físicas primárias sobre o sistema em análise, obtendo, a partir de considerações básicas, todo o comportamento termodinâmico do sistema. A equação de Boltzman mostra-se muito importante para o estudo termodinâmico de tais sistemas, e reconhecida como tal pelo próprio autor, encontra-se gravada em sua lápide.[Nota 11]

Força associada à entropia

Qual é a origem da força entrópica? A resposta mais geral é que um sistema sempre quer retornar ao seu estado de máxima entropia, isso explica porque as moléculas tendem a resistir sair do seu estado de desordem.

Em física, uma força entrópica atuando em um sistema é uma força resultante da tendência termodinâmica de todo o sistema para aumentar sua entropia. A abordagem entrópica para o movimento browniano foi inicialmente proposta por RM Neumann,[5] Neumann associou a força entrópica de uma partícula em movimento browniano tridimensional usando a equação de Boltzmann e denotou esta força como uma força motriz.

Formulação matemática

A dedução dessa fórmula parte da primeira lei da termodinâmica e da definição de trabalho, considerando dilatações pequenas podemos escrever a primeira lei na forma:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

No entanto, se a dilatação total objeto (dE) for pequena e a considerarmos igual à zero, obtemos a expressão para a força exercida pelo elástico:


///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL



transformada de Legendre consiste em uma transformação matemática que, quando aplicada sobre uma função  sabidamente diferenciável em relação às suas variáveis independentes  , fornece como resultado uma nova equação na qual as derivadas parciais  

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

A Transformada de Legendre e a Termodinâmica

A Transformada de Legendre encontra enorme aplicação em uma área da Física conhecida por Termodinâmica, área que tem por objetivo o estudo dos sistemas constituídos por "infinitos" entes físicos, moléculas em uma amostra confinada de gás, a exemplo.

Equação fundamental e Equação de estado

Em termodinâmica, cada sistema em estudo é descrito por uma equação matemática conhecida por equação fundamental, uma equação que retém em si todas as informações físicas associadas a este sistema. O conceito de equação fundamental reside no fato de, uma vez estabelecida a fronteira do sistema - o seu volume -, o número de entes que o compõem - o seu conteúdo material -, e a energia interna do sistema - o seu conteúdo em energia -, as condições deste sistema no equilíbrio termodinâmico encontram-se por estas grandezas (e algumas outras em sistemas mais complexos, como os magnéticos) então completamente determinadas, sendo obviamente calculáveis a partir destas.

As informações físicas, quando necessárias, podem ser extraídas da equação fundamental empregando-se um formalismo matemático inerente ao estudo da termodinâmica. A exemplo, para sistemas simples, no formalismo da entropia, a equação fundamental para a entropia S em um gás ideal será dependente das grandezas volume (V), número de partículas (e não de moles) N, e da Energia Interna U: . No formalismo da energia, isolando-se a energia interna U em  tem-se facilmente , também uma equação fundamental. Qualquer informação física, incluindo-se as equações de estado, a exemplo a equação de Clapeyron  e a equação da energia  (n= 3; 5; ... ) para o caso dos gases ideais, pode ser facilmente extraídas da equação fundamental.

Repare que as duas equações anteriores, a de Clapeyron  e a da energia , em função das grandezas tomadas como independentes, são equações de estado e não equações fundamentais do sistema, e portanto não retém em si, quando isoladas, todas as informações necessárias à determinação de todas as propriedades físicas do sistema. Caso conheçam-se as equações de estado de um sistema pode-se obter uma, e em consequência - mediante transformadas de Legendre - todas as equações fundamentais do sistema, mas para isto é necessário que conheçam-se de antemão todas as equações de estado do sistema, sem ausência de nenhuma delas. A título de curiosidade a equação fundamental para um sistema composto por N partículas de um gás ideal confinados em um volume V e com energia interna U é, na representação entrópica, com  representando a constante de Boltzman e c uma constante, e a menos de constante(s) acompanhando a grandeza N com unidade(s) definida(s) de forma a tornar correta a análise dimensional, não explicitamente indicadas aqui [2]:

 [3]

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Isolando-se U, tem-se, na representação da energia:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Verifica-se experimentalmente, entretanto, que as grandezas intensivas como a pressão  , temperatura , e potencial químico  ( onde  ,  e  no formalismo termodinâmico da energia) são 

Representações no Formalismo da Energia

A Transformada de Legendre cumpre exatamente o papel na termodinâmica de permitir que se escreva a equação fundamental de um sistema em função das grandezas intensivas (e/ou extensivas) associadas, e não apenas em função das correspondentes extensivas. Em acordo com a grandeza extensiva "transformada" para a intensiva a ela conjugada, dentro do formalismo da energia, a exemplo, surgem várias representações possíveis para a equação fundamental, a saber:

  • energia interna U, onde  : a representação padrão no formalismo da energia.
  • energia livre de Helmholtz F, onde : decorre da substituição da grandeza extensiva S em  pela correspondente grandeza conjugada, T, mediante F= U-TS , sendo  "mais adequada" para o estudo das transformações isotérmicas.
  • entalpia H, onde : decorre da substituição da grandeza extensiva V em  pela correspondente intensiva, P, mediante H= U+PV , sendo  "mais adequada" para o estudo das transformações isobáricas.
  • energia livre de Gibbs G, onde : decorre das substituições da grandeza extensiva S pela correspondente intensiva, T, e da grandeza extensiva V pela correspondente grandeza conjugada P em , mediante G= U-TS+PV , sendo  "mais adequada" para o estudo de processos que ocorrem à temperatura e pressão constantes.
  • grande potencial canônico, , decorre das substituições da grandeza extensiva S pela correspondente intensiva, T, e das grandezas extensivas  pelas correspondentes intensivas  em , mediante  , sendo  "mais adequada" para o estudo de processos onde ocorrem várias substâncias misturadas (N_1, N_2,...) e, mesmo em caso de substância única, trocas de partículas à temperatura constante.

Em função da entropia S ser sempre uma função monótona crescente da energia interna U, a equação fundamental fundamental  pode sempre ser "facilmente" reescrita, mediante troca de variáveis, para fornecer a equação, também fundamental, , o que, de forma similar ao feito para o formalismo da energia, dá origem ao que se conhece por formalismo termodinâmico da entropia (ou entrópico), igualmente aplicável ao estudo dos sistemas termodinâmicos e capaz de fornecer os mesmos resultados e informações antes obtidos no formalismo da energia. Transformadas de Legendre podem ser igualmente aplicadas à equação fundamental  em acordo com o caso em estudo, fornecendo equações fundamentais que nem sempre recebem nomes especiais, sendo estas genericamente conhecidas por funções de Massieu. No formalismo da energia, a energia interna  e suas transformadas são geralmente conhecidas por potenciais termodinâmicos.

A transformada de Legendre

Descrição

O gráfico de uma função, e de sua reta tangente, com inclinação  no ponto x.
Há duas formas de se especificar a curva vista em vermelho na figura: fornecendo-se diretamente a relação entre Y e X (a exemplo Y=X²), ou especificando-se o conjunto de retas a ela tangentes - vistas em azul na figura. Para definir-se este conjunto de retas especifica-se a relação existente entre o interceptos  e as inclinações P das respectivas retas:  no exemplo. A transformada de Legendre,quando aplicada a uma das equações, fornece a outra (ou, ao rigor da matemática, menos a outra: ).

Para a compreensão da transformação de Legendre ir-se-á considerar aqui a interpretação geométrica da Transformada de Legendre, e por comodidade mas sem perda de generalidade, considerar-se-á também uma função  dependente de apenas uma variável independente, X.

Sendo  no presente caso, à primeira vista pode parecer que para se obter uma função  onde P e não X desempenha o papel de variável independente bastaria eliminar-se X em  mediante a relação estabelecida entre P e X por . Um reflexão um pouco mais aguçada, entretanto, mostrará que neste processo perde-se informação associada à curva inicial visto que, uma vez conhecido , não se pode inverter o processo de forma a se obter novamente de forma unívoca a função inicial . Na transformação proposta a informação relativa à inclinação associada a um dado ponto da curva inicial  é preservada para cada ponto da curva, mas a informação sobre qual é exatamente este ponto X, ou seja, a informação de onde a reta tangente em X corta o eixo Y, não. Assim, apesar de ser possível se reconstruir o "formato" da curva inicial  partindo-se de , a determinação da distância exata desta curva ao eixo coordenado Y no gráfico não será possível, podendo a curva que se obtém da reconstrução transladar livremente na horizontal; a informação da posição correta desta se perde na transformação inicial, conforme proposta.

A solução para o problema deve ser obtida partindo-se da observação de que qualquer equação  que permita construir a família de retas tangentes a uma dada curva - e não apenas conhecer a inclinação de cada reta tangente em questão - automaticamente determina a própria curva de forma tão boa quanto o faz a equação  da curva.

Para tal, considere a reta tangente à curva  no ponto específico (X,Y) cuja inclinação é P (ver figura). É possível identificar o ponto  onde esta reta intercepta o eixo Y e perceber que, da definição de inclinação de uma reta:

donde tem-se

Como as expressões  e  são conhecidas, uma simples álgebra matemática permite a eliminação de X e Y em favor de P e  na equação acima, o que fornece a procurada relação . Esta relação claramente permite a reconstrução de cada uma das retas tangentes com precisão, pois fornecendo-se o valor da inclinação P de uma delas, sabe-se com clareza, então, o ponto  onde esta reta deve interceptar o eixo Y.

Para recuperar-se a equação original  partindo-se da equação , basta considerar que a Transformada de Legendre é simétrica, exceto por um sinal de menos na equação de transformação[4], à sua inversa. Assim, à parte um sinal de menos a se considerar, sendo T a transformação de Legendre, aplicá-la duas vezes em sequência fornecerá a mesma função inicial (T² = 1).

Em resumo tem-se:

A transformada de Legendre: 
Determinar  e Determinar  e 
Eliminação de X e Y fornece Eliminação de P e  fornece 



///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL


///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

muito mais acessíveis por medidas experimentais do que as grandezas extensivas como o volume V, entropia S e número de partículas N. Seria portanto extremamente conveniente, em acordo com a situação, principalmente em situações onde uma ou mais destas permaneçam constantes, que a equação fundamental pudesse ser reescrita, sem perda de informação, em função destas grandezas intensivas.

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

associadas, e não as variáveis  em si, figuram como variáveis independentes. A nova equação consiste na "mesma" equação inicial, mas agora "em uma forma reescrita", . A Transformada de Legendre realiza-se sempre de forma que nunca se perca qualquer informação presente na equação original, devendo as mesmas informações estarem sempre contidas na nova equação.[1]






Quando um sistema imerso em um ambiente à pressão constante sofre um processo qualquer, indo de um estado inicial "i" para um estado final "f", a quantidade de energia trocada com a vizinhança na forma de trabalho é definida apenas pela variação de volume  sofrida pelo sistema e pela pressão P do ambiente constate durante todo o processo. Assume-se aqui, sem perda de generalidade, que tem-se uma transformação quase-estática, de forma que a pressão P é também a pressão do sistema em si. A citada quantidade de trabalho W realizada pelo sistema sobre a vizinhança sob pressão constante é determinável através da expressão:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

É de interesse mensurar neste tipo de transformação a quantidade de calor trocada entre o sistema e sua vizinhança. Ao ceder-se certa quantidade de calor ao sistema, este expande-se, realizando um trabalho W sobre a vizinhança. A energia entregue à vizinhança - e que por tal abandona o sistema - é transferida às custas de parte do calor que entra no sistema, de forma que apenas parte do calor transferido ao sistema implica real aumento na energia interna deste sistema. A lei da conservação da energia fornece:

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Como a energia interna e o volume do sistema são funções de estado, segue-se que nestes processos a quantidade de calor trocada também é uma função de estado. A expressão acima permite a definição de uma grandeza física conhecida por entalpia H de forma que:

Decorre que a entalpia pode ser definida pela função de estado introduzida por Josiah Willard Gibbs:

Definição de Entalpia

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

onde U é a energia interna do sistema e PV é o produto da pressão pelo volume do sistema (e da vizinhança), ou seja, a energia armazenada no conjunto sistema vizinhança.

Conforme definida, a variação da entalpia implica pois a expressão antes apresentada para a conservação da energia:

A entalpia, por ser - assim como a energia interna e o trabalho - uma grandeza associada à medida de energia, é por tal também medida em joules.

É aqui importante ressaltar-se que a variação da entalpia em um dado processo corresponde sempre à entalpia do estado final menos a entalpia do estado inicial atrelados ao referido processo, e que em equações químicas esta corresponde pois a entalpia do estado onde tem-se os produtos menos a entalpia do estado onde tem-se os reagentes ().

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Partindo-se do fato que a expressão da energia interna  é uma equação fundamental para o sistema e assim o sendo encerra em si todas as informações acerca do comportamento deste, é de se esperar que seja possível, partindo-se desta expressão, inferir o comportamento do correspondente sistema à pressão constante, e por tal derivar-se da primeira a expressão para . Em acordo com o estabelecido pela Transformada de Legendre aplicada à energia interna , a fim de constituir também uma equação fundamental, a entalpia  deve figurar em função, entre outras se houver, das grandezas extensivas entropia S, quantidade de matéria N, e da grandeza intensiva pressão P, devendo a correspondente grandeza extensiva conjugada à pressão - o volume V - ser substituída em  mediante a relação:[5]

 .

///

sistema indeterminístico Graceli ; SISTEMA GRACELI INFINITO-DIMENSIONAL

Comentários

Postagens mais visitadas deste blog